Rainwater Harvesting Educational Workshop --Tucson Water's Incentive Program

Welcome to an online class:

- We take attendance and follow up with additional resources for all class attendees. Our moderator will contact you if we need additional information.
- During the session please use the chat window if you have a question.
- At the end of the session we will have a Q&A. You will be able to use your webcam and mic if desired or just use your chat box.

Learning Objectives

- How to save potable water
- Select appropriate strategies
- Ensure best practices
- Enhance quality of life grow shade and food while saving potable water
- Submit a successful rebate application

5 Steps to Saving Outdoor Water

- 1. Check your irrigation system and settings monthly!
- 2. Plant the water (basins) & plant low-water natives
- 3. Use organic mulch
- 4. Plan to not irrigate your native landscape after 3 years
- 5. Scale your veggies or fruit water use to your rain and greywater supply

Tucson, 1904. Santa Cruz River from "A" Mountain

Tucson, 1981. Santa Cruz River from "A" Mountain

Program Goals of RWH rebate:

- 1. <u>Capture onsite rainwater as a functional water source</u> (aligning with OneWater goals to provide quantitative data estimates that previously have not been captured)
- 2. <u>Utilize rainwater to grow landscape plants and the urban canopy</u>, to yield:
 - 1. More vegetation without increasing potable use
 - 2. Decrease potable water use
- 3. Align 1" rainfall capture with regional stormwater retention requirements

Developed for public rights-of-way properties

30% evapotranspiration

water harvesting restores local hydrology & can benefit our homes!

Images courtesy of Brad Lancaster, harvestingrainwater.com

Harvest Rainwater in the soil and/or a tank to promote resource abundance!

And move beyond resource scarcity

Rainwater Harvesting Systems

- Harvest: collect rainfall from roofs, patios, and other surfaces
- ► Store:
 - In the soil (Passive Systems) allows plants to access moisture stored in the soil
 - In a tank (Active Systems) allows long-term storage and distribution when needed
- Benefit: reduce/eliminate potable water demand for irrigation or other water needs

Incentives Program Rebate

Who qualifies?

- Residential and small commercial Tucson Water customers
- Small commercial is a property with a single meter that is 5/8 or 3/4 inches. Commercial properties with more than one meter or meters larger than 3/4 inches <u>do not</u> <u>qualify</u>.

Two levels

Applicants may apply for both a passive and active rebate not exceeding \$2,000 for the combination

Rainwater Rebate Incentive July 1, 2023

Rebate pricing changes:

- All water harvesting features on a property can be combined and calculated to a maximum of \$2000 rebate.
- Calculate the rebate for passive systems based on the size of the basin(s); the rebate for <u>passive systems is \$1.50/gallon, based on basin volume</u>, if the system is correctly sized (rebate amount accounts for basin infiltration of 1.5 times the measured volume).
- A rainwater harvesting <u>system must be sized to capture at least one inch of rainwater</u> <u>from the drainage area (usually roof area) to receive the full rebate amount</u> (\$1/gallon active and \$1.50/gallon passive). If a system is not sized large enough to capture the full one inch of rainfall, the customer will receive \$0.50/gallon for all system features. A property can have multiple drainage areas.

Questions: email conservation@tucsonaz.gov or call 520-791-4331

Application Process

Zoom Help Sessions

Weekly Zoom Help Sessions, starting Monday, June 26th Mondays at 3pm and Thursdays at 12pm <u>https://us06web.zoom.us/j/84335115426</u> Meeting

ID: 843 3511 5426 Dial-in: +1 253 205 0468 US

tucsonaz.gov/water/rainwater-harvesting-rebate

Questions?

Residential Resources

Potential Annual Rainwater Supply:

- Roof, 1000sf = **6,000 gallons/yr**
- Landscape, 1000sf = 3,000 gallons/yr
- Total Rainwater potential for 1/5 acre
 > 45,000 gallons/yr
- + Greywater! (~4000 18,000 gal)
- + AC condensate! (~200 500 gal)

Annual Municipal Water Demand: Total Use = 80 gal/person/day x 3 persons/home x 365 days = 87,600 gallons/yr

Outdoor use (~30% of total) = 26,280 gallons/yr

Create your Local Water Budget!

watershedmg.org/water-budget-calculator

Local W	ater Budge	t Calcula	ator								
VIEW ED	T WEBFORM	ESULTS CIV	ICRM								
How m	ch minwator :	nd growing	tor can your	harmost	t vour b	0702					
How III	icii failiwater a	nu greywa	iter can you	u naivest a	it your i	iome:					
Just fill in th	e five input field	and the cal	culator will	show your i	ainwater	harvest	ing pote	ential in	the fol	llowing chart	Or
JUSLININI											
know how r	nuch rainwater a	nd greywater	r you can ha	rvest at yo	Ir home,	take the	e next s	steps an	nd join (our Rain to	Tal
know how r	nuch rainwater a and share your p	nd greywater rogress!	r you can ha	irvest at yo	ır home,	take the	e next s	steps ar	nd join (our Rain to	Tal
campaign	nuch rainwater a and share your p	nd greywater rogress!	r you can ha	irvest at yo	ır home,	take the	e next s	steps ar	nd join (our Rain to	Tal
campaign	nuch rainwater a and share your p	nd greywater rogress!	r you can ha	irvest at yo	ır home,	take the	e next s	steps ar	nd join (our Rain to	Tal
Input What is yo	nuch rainwater a and share your p ur roof area (in sq	nd greywater rogress! Jare feet)? *	r you can ha	irvest at yo	ır home,	take th	e next s	steps ar	nd join (our Rain to	Tal
Input What is yo	uch rainwater a and share your p ur roof area (in sq	nd greywater rogress! Jare feet)? *	r you can ha	irvest at yo	ır home,	take the	e next s	steps ar	nd join (our Rain to	Tal
Input What is your your of of	ur roof area (in sq	nd greywater rogress! Jare feet)? * alculated by m	r you can ha nultiplying the	rvest at yo	ur home,	take the	e next s	steps ar	nd join (our Rain to	Tal
Input What is your roof of width of your roof of	ur roof area (in sq ur roof area (in sq ur con be simply o ur house.	nd greywater rogress! uare feet)? * alculated by m	r you can ha nultiplying the	rrvest at yo	ur home,	take the	e next s	steps ar	nd join (our Rain to	Tal
Input What is you What is you What is you	ur roof area (in sq rea can be simply o ur house. ur landscape area	nd greywater rogress! Jare feet)? * <i>alculated by m</i> (patio and pla	r you can ha nuitiplying the anting areas i	rvest at yo	ur home,	take th	e next s	steps ar	nd join (our Rain to	Tal
Input Input What is you Your roof of width of you Square fee	ur roof area (in sq ur roof area (in sq ur coof area (in sq ur house. ur landscape area t)? *	nd greywater rogress! uare feet)? * <i>alculated by m</i> (patio and pla	r you can ha nuitiplying the anting areas i	rrvest at yo : <i>length x</i> n	ır home,	take the	e next s	steps ar	nd join (our Rain to	Tal
Input Input What is you Your roof of width of you What is you square fee How many	ur roof area (in sq ur roof area (in sq ur coof area (in sq ur house. ur landscape area t)? *	nd greywater rogress! uare feet)? * <i>alculated by m</i> (patio and pla me in your ho	r you can ha nuitiplying the anting areas i pome? *	rvest at yo	ır home,	take the	e next s	steps ar	nd join (our Rain to	Tal

gallons) What is your July total water use (from your water bill in

gallons)? *

If your monthly use is measured in CCF than multiply your monthly use by 748 gallons per CCF. (Example: 10 CCF * 748 gal/CCF = 7,480 gallons)

Evaluate Your Space

Analyze your site

- Where is water already gathering?
- How can you get the water to where you need it?
- Are their any additional sources of water (e.g. AC condensate, greywater, stormwater, etc)

You've got rainwater water, now make a plan!

Project Plan

Participants are encouraged to bring a basic site plan (sketch or bird's-eye view) of their property to work on during the last hour of the class.

A project plan must be submitted with each rebate application to demonstrate the selection, use, and anticipated outcomes of the practices. The project plan may be hand drawn.

- Draw site to scale and include dimensions, property line, and street address.
- Show direction of water flow off roof tops and landscapes with arrows.
- Determine catchments.
- Identify areas that require irrigation.
- Label surface areas of hardscapes, identified rainwater practice(s), and associated potential storage volume.

RAINWATER HARVESTING REBATE

Runoff Calculations & Site Elements

RWH Runoff

- Runoff
 Largest area to collect greatest amount of rainwater runoff on typical urban residential property:
 - **Rooftop** (largest impervious surface on property) the first point of contact for rainfall
 - This can include other rooftop structures on property (i.e., ramadas, dwelling unit, shed, etc)

- Determining direction of roof rain runoff (aerial site example captured from <u>PimaMaps</u> Guide)
 - Pitched roof flow is direction of roof slope
 - General flow of rainwater on property

TUCSON

RWH Runoff: Roof Calculation

- Determining area of roof rain runoff (aerial site example captured from <u>PimaMaps</u> Guide; can use other site maps/aerials)
 - Pitched roof flow is direction of roof slope
 - Select PimaMap's `Tools'
 - Using Tools → MeasurementArea, outline area of roof sloping in same direction Side roof pitch area

Property line Direction of water Back roof pitch area draining off roof Front roof pitch area Roof outline

20

Tools

Site Plan: Measuring Basins – Back Yard Detail

- Basin measurements:
 - Longest length
 - Widest width, that is perpendicular to length
 - Enter in online application
- Default basin depth is 8" (0.65')
 - 8" has been majority of residential installations
- can be manually changed on form (i.e., swales may be shallower)
- Depth over 3' requires a permit

Back yard typical swale + basin

Site Plan: Back Yard Cistern/Tank

- Cistern/tank placement
 - Determine location of cistern (back and/or sideyard)
 - must be connected to a roof gutter system
 - If connecting front roof gutter to cistern/tank in Side/back yard, enter front roof area

Direction of water draining off roof

Location of cistern/tank, enter gallon size on application

Property line (outlines site watershed)

Installation of/or existing gutters

Roof outline

On-line application

Tucson Water - Rebate Programs

Design Submittal - Rainwater Harvesting

Site Plan & Design Measurements

Please note that the rebate amount will be calculated by the storage capacity of the system. Customer must determine the best system for their property whether it is all passive, all active, or a combination of both.

The complete rainwater harvesting system must be sized to capture at least 1" of rain from the drainage area to receive full rebate amount. Not to exceed the total amount of \$2,000 for the entire rebate.

- \$1.00/ gallon for active
- \$1.50/ gallon for passive (this dollar amount is calculated in the formula with a 1.5 multiplier in the volume of basin storage)
- \$0.50/ gallon for all system features (if not sized to capture 1" of rainwater)

Please upload your site plan below and submit the measurements of your design.

Site plan*

Upload

We only accept PDF, JPG, TIFF, PNG.

Front Yard Design Measurements	۲
Back Yard Design Measurements	۲
Side Yard Design Measurements	۲
Total System Storage Capacity	۲
Previous	Next

Site Plan Submittal

- Example site plan for submittal
 - Site inspection will be based on submitted site design

KeyProperty line•Roof rainwater flow direction•Onsite rainwater•Gutter•Gutter•runoff Basin•Basin measurement lines•Cistern/tank

800-gallon tank/cistern

On-line application

Front Yard Design Measurements

Code does not allow for tanks taller than 5' to be placed in front yard. See City of Tucson Tank Zoning and Permit Requirements here.

(

Are you collecting water from a front yard roof?*

 Yes

O No

Do you have front yard basin(s)?*

Yes
No

Questions?

Passive Systems/Earthworks

Use gravity to distribute rain runoff

• SLOW

• SPREAD

° SINK

Cheapest storage option for large amounts of rainwater

Make your earthworks meaningful!

Size for a large rainfall event = 1" to 2.5"

10ft x 16ft x 6" depth basin = 600 gallons

Explore Your Soils

Organic mulch is applied to basins, 2 – 4 inches thick, to help infiltrate more water, reduce evaporation of soil moisture, and replenish nutrients in the soil.

Basin Edge Slopes

Let's Plant the Water! Benefit/Cost: \$4.4 returned for every \$1 invested

AND AN ADDRESS OF A DAMAGE OF

Right Plant, Right Place

http://www.harvestingrainwater.com/2014/07/12/revised-multi-use-rain-garden-lists-for-tucson-arizona-and-a-template-for-anywhere-else/

Say NO to Mow, Blow, & Go!

Grass is a water hog and is maintained with loud mowers and chemical fertilizers.

Leaf blowers are a public nuisance—they cause air and noise pollution. And they blow vital organic material off the landscape!

Chemical weed killer is sprayed frequently on public landscapes (often seen as blue/green coloring). These chemicals are harmful to our soil, water, and wildlife.

Say YES To Hoe, Flow, & Grow!

Hand tools are the best way to remove weeds. You can be selective about what weeds you — and soak into the soil. pull, and there is no noise or chemical pollution!

Plan your landscape to let the water flow through your yard

Let your plants grow and prune minimally. You'll be pleased with the results-healthier plants, unique shapes, and better wildlife habitat.

Right of Way Basins

- Harvests Stormwater
- Support shade in your neighborhood
- Permit required
- Rebate 50 cents/gallon

Curb Cut / Core drill

Right Plant, Right Place

Questions?

Active Water Harvesting: Cisterns

- Food production
- Drinking water
- Flood prevention
- Fire protection

. . . .

What are your goals for a cistern?

How much water do your plants need?

- Mesquite or Palo Verde = 4,000-5,000 gal/yr
- Full citrus, high-water use tree = 8,000 gal/yr
- Pomegranate, mod-water use tree = 3,000 gal/yr
- Lawn & Veggie Garden, very-high water use = ~40-50 gal/sq.ft/yr
- If you have an existing landscape
- Review your water bill:
 - compare winter use with summer use; the difference is your landscape irrigation

Tank Sizing Considerations

- Water demand required over length of dry period, 4 months (March June)
- Available seasonal rooftop supply (~4-6" per rainy season)
- Available space
- Budget

Review: Rain Tank Best Management Practices

- Use high-quality materials (Schedule 40 PVC & ensure painted to withstand UV; sheet metal leaf catcher)
- Install closed systems (no light into tank, screen tanks)
- Install systems to minimize maintenance (accessible debris filters & first flush devices)
- Install tanks on level pads (concrete or compacted sand, not gravel)

City of Tucson: Do I need to permit my tank?

Requirement	Cistern size	Front Yard	Side Yard	Rear Yard	Screening
No review required	 <5' in ht. <10 sf area ≈ 3.5' diameter 	✓ no setback	✓ no setback	✓ no setback	θ
No review required	 >5'<6' in ht. <10 sf area ≈ 3.5' diameter 	θ	✓ no setback*	✓ no setback*	~
Site Review required**	 >6' in ht. >10 sf area ≈ 3.5' diameter 	θ	✓ setback***	✓ setback***	check zone requirement
Zoning Admin. Interpretation	Part of building structure	case-by case	case-by case	case-by case	case-by case
Site Review + building permit	 residential: max. ht. 12' commercial: ht. of principle bldg 2:1 ht:width ratio >5000 gal elect/pump equip 	allowed in commercial (but not residential)	V	×	check zone requirement

County or other jurisdiction or HOA = CHECK!

Recycled (not eligible for rebate) – not rated for potable use

Leaf Diverters

Strainer Baskets

First Flush

Overflow – End of Pipe Critter Preventers

Rainwater Delivery

- Use at least 1" PVC pipe
- Use full-port hose-bibs and valves
- Locate cistern on high ground to maximize available pressure
- Use larger diameter irrigation emitters (flag emitters – best) for gravity-based systems
- Pump systems require backflow prevention

Zero Pressure Gravity-based Irrigation Timers

1/2 St To

Toro

Reduced Pressure Assembly (RPA) must be installed with all pump systems

Meter

?

Per Tucson City Code, the backflow assembly must be installed as close to the water meter as possible to help avoid cross-connections. It also needs to be installed on private property because it is part of the private plumbing system (Utility right of way is not private property).

Below Ground Tanks

Living Lab: 10,000gal Rain Tank

Maintenance

Have a specific plan!

- Clean gutters and leaf diverters
- Check and reset first flush
- Check for leaks
- Inspect stability and integrity
- Clean/flush/replace filters
- Test water annually (if drinking)

Questions?

Rainwater Harvesting Financing Options

www.watershedmg.org/rainmoney

Remember those... Water Harvesting PRINCIPLES

From Brad Lancaster's, <u>Rainwater Harvesting for</u> <u>Drylands and Beyond</u>

1. Begin with Long and Thoughtful Observation

Water Harvesting Principles 2. Start at the Top

3. Start small and simple

4. Spread and infiltrate the flow of water

5. Always plan for an overflow route and manage overflow as a resource

Water Harvesting Principles 6. Maximize living and organic groundcover

7. Maximize beneficial relationships and efficiency – STACKING FUNCTIONS

8. Continually reassess your system

And be sure to have FUN!
Let's go for a virtual tour!

Living Lab: Courtyard BEFORE – 2017

Living Lab: Courtyard Limited Hours till 7/5, call for appt.

March 2020

Living Lab: Dodge Blvd

Living Lab: Dodge Blvd

After - 2018

Living Lab: Dodge Blvd

March 2020

Living Lab: Rain Tank

Living Lab: Rain Tank

Questions?

Thank you for virtually visiting our Living Lab and Learning Center

watershedmg.org/living-lab

End of Presentation

watershedmg.org/living-lab