Welcome to
 Hydrate San Tan: Hydrate Your Food!

To connect with us best here on Zoom:

- Please keep yourself muted when not speaking.
- Check your audio settings to make sure your audio is working or switch to telephone audio (Image to right).
- Please use the chat feature to ask questions. There will be time at the end of class where the moderator will share these questions with the presenter

Seleata Microphone
\checkmark Micrephone Array (Realtek(R) Audio)

Solectaspeater

\checkmark Speaktr/Hesdphone (Realtek(R) Audio)
Same as System
Test Speaker \& Mirrophone..
Switch to Phone Audlo...
Leave Computer Audic
Audio Settingr...

Siep Vides

Hydrate: Your Food

Use rain tanks to support your vegetable garden

Learning Objectives

1. Recognize types of tanks and benefits.
2. Installing a low maintenance systems
3. Pairing your storage potential with your landscape needs

The capture and use of rainwater, stormwater (and greywater) for beneficial purposes

WATER HARVESTING

Rain Tanks through History

EL JADIDA, MOROCCO
ISTANBUL, TURKEY, INDIA
11TH - 16TH CENTURY
THOMAS JEFFERSON

Passive vs. Active Water Harvesting

Passive: land contouring (basins, swales, berms). Requires little maintenance but cannot store water long-term.

Active: greywater, rain tanks. Requires active use of system but gives more control.

- Tanks allow collection across many rain events and storage during dry months.

5 Steps to Saving Outdoor Water

1. Check monthly your irrigation system and settings!
2. Plant the water (basins) \& plant low-water natives
3. Use organic mulch
4. Plan to not irrigate your native landscape after 3 years
5. Scale your veggies or fruit water use to your rain and greywater supply

Active
 Storage of Rainwater

Reduce groundwater reliance
Preferred water choice of plants - no chlorine, salt

Relatively clean and soft water source
Promote healthy soils
Long-term investment
Energy savings/cost savings

Types of

 Rain Tanks
Rain Barrels vs. Rain Tanks

- AVERAGE 50-GALLON CAPACITY
- ONLY CAPTURE A PORTION OF RAINFALL EVENTS
- CAN MEET SOME PLANT WATER NEEDS
- GENERALLY LOWER COST
- "TRAINING WHEELS"
- CAPACITY 300-1,000 GALLONS OR MORE
- CAN HOLD AN ENTIRE SEASON'S RAIN
- CAN COVER A MAJORITY OF PLANT NEEDS
- PART OF A COMPREHENSIVE WATER HARVESTING SYSTEM

To aspire to...

Rain tanks as works of art

Critical Features

- Water tight
-Light proof
- Vented

○Mosquito proof
-Critter proof
-UV resistant
oPlanned overflow

Troubleshooting

Troubleshooting

Maintenance

Inspection:

- Check for leaks or wet areas
- Check and clear debris from gutters and downspout, and downspout tubes are well secured
- Check overflow outlet, clear out any debris
- Check to be sure adult mosquitoes do not have access
- Empty first flush after each rainfall event
- Clean out bottom sediment layer if needed (only if $>3-4^{\prime \prime}$ sediment layer)

Winter Preparation:

- Insulate all supply pipes and fixtures which contain water.
- In colder climates if the tank itself is not buried or insulated properly then the tank and supply lines may need to be drained completely to prevent freezing.

How large of a rain tank do I need? It depends...
TANK SIZING

San Tan Valley Rainfall

Average Rainfall
łverage temperatures and precipitation 9.9 Inches

Rainy Seasons

https://www.meteoblue.com/

Capture events from multiple storms - cumulative rainfall over a period.
Aim to capture rainfall from the entire monsoon or winter rain season $=$ ~ 4 inches

○A tank that captures $1^{\prime \prime}$ of rain - good
oA tank that captures 2 " of rain - better
○A tank that captures 3-4" of rain - best?

Tank sized based on catchment area

Activity: Calculate your rooftop runoff from 1", 2", 3 ", and 4 " of rain.

Formula: Square feet of roof $x 0.623 \times$ runoff coefficient x inches of rain

Source: Rooftop runoff

Example: Cindy Cistern has a 1,500 square foot home with an asphalt shingle roof and she wants to capture $4 "$ of rain in her cistern.

Answer: $1,500 \times 0.623 \times 0.9$ runoff coefficient \times 4 " of rain $=3,364$ gallons of water. Ambitious!

She will compromise on two 1,500 gallon cisterns - one on each side of her home.

Tanks may not cover the entire need of backyard gardens, but they can help greatly reduce the need for municipal water sources.

Activity: Calculate the annual water need for your garden.

Formula for vegetable garden: Square footage $\times 40$
Example: Gardener Greg has a 5×10 garden.

> Answer: $5 \times 10 \times 40=2,000$ gallons per year
> Complete answer: 2,000 / $2=1,000$ gal per season

Calculate Discrepancie S

1. How many gallons of rainwater can your cistern(s) hold per rain season?
2. How may gallons of water do your veggies need per season?
3. How much water will be needed that the cistern cannot provide?
4. How will you provide this water?
5. OR, if there is excess water, what can you use it for?

Activity: Draw cisterns into your site plan (started in Week 1).

Cistern Placement

Based on placement of gutters, human use/access, and stacking functions, where in your yard is the best spot to place your cistern(s)?

Site Plan (from Week 1)

Property lines

House

Other permanent structures (storage sheds, pool, driveway, sidewalks, etc.)

Existing trees and shrubs
Mark direction - North, South, East, West

Questions?

Charlie Alcorn | Watershed Management Group calcorn@watershedmg.org Cell: 520.396.3266 x3

Thank You!!!

Phoenix Green Living Co-op Project 10/12/2013

